
 

Line bundles on curves
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Lemmy 1 if for all pe X 40 21 4 LC p 1
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For the last point want to see that
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Them I X Y projective morphism of
finite type b schemes

T is a closed embedding iff
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question is local on target
assume whoy Y Spec B
finite affine X Spec A
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is a closed subset

G 4
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